1. Subpart PP - Suppliers of Carbon Dioxide	2
1.1 Using e-GGRT to Prepare Your Subpart PP Report	2
1.1.1 Subpart PP Summary Information for this Supplier	
1.1.2 Subpart PP Product and Equipment Information	
1.1.3 Subpart PP Supply Information	

Subpart PP - Suppliers of Carbon Dioxide

🖶 A printer-friendly version (pdf) (30 pp, 7,688K) of GHG reporting instructions for this subpart

Please select a help topic from the list below:

- Using e-GGRT to Prepare Your Subpart PP Report
 - Subpart PP Summary Information for this Supplier
 - Subpart PP Product and Equipment Information
 - Subpart PP Supply Information
- · Carry forward of data from previous submissions into RY2011 forms
- Subpart PP Rule Guidance
- Subpart PP Rule Language (eCFR)

Additional Resources:

- Part 98 Terms and Definitions
- Frequently Asked Questions (FAQs)
- Webinar Slides

Using e-GGRT to Prepare Your Subpart PP Report

This page provides an overview of subtopics that are central to Subpart PP Suppliers of Carbon Dioxide reporting:

- Summary Information for this Supplier
- Product and Equipment Information
- Supply Information
- Validation Report

If you previously reported for Reporting Year (RY) 2010, the Agency has carried some of your RY2010 data forward and entered it in your RY2011 forms to reduce reporting burden. It is still your responsibility to review and assure that all the information in your submission is correct, but the Agency believes that most of the data which is carried forward is unlikely to change significantly from year to year. For more information about carry forward data, please see the Carry forward of data from previous submissions into RY2011 forms help content.

The end of the page contains links you can use for more information on these topics.

Click image to expand

Summary Information for this Supplier

Subpart PP requires you to report the following data about your facility or company:

- The classification that describes your facility (or company in case of importers and exporters)
- The calculation methodology used to estimate quantities of CO2

Product and Equipment Information

Subpart PP requires capture and extract facilities to report the following information at the facility level; importers and exporters must report the information at the corporate level:

- The type of equipment used to measure CO₂ and the standard used to operate and calibrate the equipment
- The aggregated annual quantity of CO₂ transferred to each of the following end-use categories, if known:
 - Food and beverage
 - Industrial and municipal water/wastewater treatment
 - Metal fabrication, including welding and cutting
 - Greenhouse uses for plant growth
 - Fumigants (e.g., grain storage) and herbicides
 - Pulp and paper
 - Cleaning and solvent use
 - Fire fighting
 - Transportation and storage of explosives
 - Enhanced oil and natural gas recovery
 - Long-term storage (sequestration)
 - Research and development
 - Other
 - Unknown
- The number of days in the reporting year for which substitute data procedures were used to measure the following:
 - CO₂ mass or volume
 - CO₂ concentration
 - CO₂ stream density

Supply Information

Capture facilities, extract facilities, importers, and exporters that use flow meters (regardless of segregation) must report the following information at the facility or corporate level:

• Annual mass of CO₂ for each flow meter (in metric tons)

e-GGRT will calculate this value based on inputs you provide for each individual flow meter. The following information is required for each individual flow meter:

- If a mass flow meter is used to report CO₂ supply:
 - A unique flow meter name or ID
 - Quarterly mass of each CO₂ stream (in metric tons)
 - Quarterly concentration of each CO₂ stream (in weight percent CO₂) and the standard used to measure it
 - The location of the mass flow meter in the process chain
 - The percentage of the CO₂ stream that is biomass-based
- If a volumetric flow meter is used to report CO₂ supply:
 - A unique flow meter name or ID
 - Quarterly volume of each CO₂ stream (in standard cubic meters)
 - Quarterly CO₂ concentration of each CO₂ stream (in weight or volume percent CO₂) and the standard used to measure it
 - Quarterly density (in metric tons per standard cubic meter)
 - if the CO₂ concentration is measured in weight percent, provide the quarterly density of the CO₂ stream and the standard used to measure it
 - if the CO₂ concentration is measured in volume percent, the quarterly density of CO₂ required by the rule will be displayed
 - · The location of the volumetric flow meter in the process chain

Capture and extract facilities that supply CO₂ in containers must report the following information at the facility level:

Annual mass of CO₂ for each CO₂ stream supplied in containers (in metric tons)

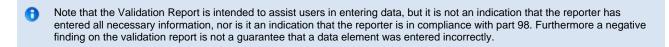
e-GGRT will calculate this value based on inputs you provide for each CO₂ stream supplied in containers. The following information is required for each CO₂ stream supplied in containers:

- If mass is used to report CO₂ supply:
 - A unique CO2 stream name or ID

- Quarterly mass of each CO₂ stream (in metric tons)
- Quarterly concentration of each CO₂ stream (in weight percent CO₂) and the standard used to measure it
- If volume is used to report CO₂ supply:
 - A unique CO₂ stream name or ID
 - Quarterly volume of each CO₂ stream (in standard cubic meters)
 - Quarterly CO₂ concentration of each CO₂ stream (in weight or volume percent CO₂) and the standard used to measure it
 - Quarterly density (in metric tons per standard cubic meter)
 - if the CO₂ concentration is measured in volume percent, provide the quarterly density of the CO₂ stream and the standard used to measure it
 - if the CO₂ concentration is measured in weight percent, the quarterly density of CO₂ required by the rule will be displayed

Importers and exporters that supply CO₂ in containers must report the following information at the corporate level:

- Annual mass of CO₂ in all containers imported (in metric tons)
- Annual mass of CO₂ in all containers exported (in metric tons)


Validation Report

You can use the Validation Report to assist with the completeness and quality of your reporting data.

You should use the Validation Report to check your work. The Validation Report performs two types of checks:

- Data Completeness: Data that are required for reporting are missing or incomplete.
- Data Quality: Data are outside of the expected range of values.

You may view the Validation Report at any time.

Back to Top

See Also

Screen Errors Subpart PP Summary Information for this Supplier Subpart PP Product and Equipment Information Subpart PP Supply Information Subpart Validation Report

Subpart PP Summary Information for this Supplier

This topic provides a step-by-step description of how to enter Subpart PP Suppliers of Carbon Dioxide summary information about this Supplier.

Adding or Updating Summary Information for this Supplier

To add or update Subpart PP Summary Information for this Supplier, locate the Summary table on the Subpart PP Overview page, and click OPEN.

Subpart PP requires you to report the following data about your facility or company:

- The classification that describes your facility (or company in case of importers and exporters)
- The calculation methodology used to estimate quantities of CO₂

This information must be input to e-GGRT.

To enter your supplier type for the first time, select the classification that describes your facility (or company for importers and exporters) using the radio buttons and click NEXT.

Click image to expand

Select the calculation methodology used to estimate quantities of CO_2 using the radio buttons. The calculation methodologies available for you to use depend on the supplier type you selected on the previous screen. If you selected "capture facility," you can select flow meter(s) with no segregation, flow meters with segregation, or stream(s) that deliver CO_2 to containers. If you selected "extract facility," you can select flow meter(s) or stream(s) that deliver CO_2 to containers. If you selected "importer or exporter," you can select flow meter(s) or containers.

When finished, click NEXT.

To change your supplier type or calculation methodology, click CHANGE and use radio buttons to make changes as appropriate.

When finished, click NEXT.

Back to Top

See Also

Screen Errors Using e-GGRT to Prepare Your Subpart PP Report Subpart PP Product and Equipment Information Subpart PP Supply Information Subpart Validation Report

Subpart PP Product and Equipment Information

This topic provides a step-by-step description of how to enter subpart PP Suppliers of Carbon Dioxide Product and Equipment Information for this Supplier.

To add or update subpart PP Product and Equipment Information for this Supplier, locate the MISCELLANEOUS INFORMATION table on the Subpart Overview page, and click OPEN.

Agency					Electronic Greenhouse	
HOME FACILITY REGIS	TRATION FACILITY MANAGEMENT D.	ATA REPORTING			Reporting Hello, Mam-Marie Sallah F	
e-GGRT Help Using e-GGRT for Subpart F reporting	P Suppliers of Carbon Dioxide C Subpart PP: Suppliers of Subpart Overview - Miscellaneous In	of Carbon I		e		
	MISCELLANEOUS INFORMATION • Each type of equipment used t • The number of days for which s determine the mass or volume, • The annual quantity of CO2 trans-	o measure the tot substitute data pro , concentration an	al flow of ocedures d density	the CO2 stream vere used to		
	TYPES OF EQUIPMENT USED TO I				STREAM	Delete
	ADD a Type of Equipment				1	
	Please provide the aggregated annua	I quantity of CO2	your facili	y transferred to e	ach of the following end-use catego	ories:
	Food	and beverage			(metric tons)	
	Industrial and municipal wat	er/wastewater			(metric tons)	
	Metal fabrication, including				(metric tons)	
	Greenhouse uses for				(metric tons)	
	Furnigants (e.g., grain storage) a				(metric tons)	
		ulp and paper			(metric tons)	
	Cleaning an	nd solvent use			(metric tons)	
		Fire fighting			(metric tons)	
	Transportation and storage Enhanced oil and natural				(metric tons)	
	Long-term storage ((metric tons) metric tons	
	Research and				(metric tons)	
		ther/unknown			(metric tons)	
					,	
	Please provide the number of days fo	r which substitute	e data pro	edures were use:	to measure the the following:	
	CO2 mass or volume			(days)		
	CO ₂ concentration			(days)		
	CO2 stream density			(days)		

Subpart PP requires capture and extract facilities to report the following information at the facility level; importers and exporters must report the information at the corporate level:

- The type of equipment used to measure CO₂ and the standard used to operate and calibrate the equipment
- The aggregated annual quantity of CO₂ transferred to each of the following end-use categories, if known:
 - Food and beverage
 - · Industrial and municipal water/wastewater treatment
 - · Metal fabrication, including welding and cutting
 - Greenhouse uses for plant growth
 - Fumigants (e.g., grain storage) and herbicides
 - Pulp and paper
 - Cleaning and solvent use
 - Fire fighting
 - Transportation and storage of explosives
 - · Enhanced oil and natural gas recovery
 - Long-term storage (sequestration)
 - Research and development
 - Other
 - Unknown
- The number of days in the reporting year for which substitute data procedures were used to measure the following:
 - CO₂ mass or volume
 - CO₂ concentration
 - CO₂ stream density

This information must be input to e-GGRT.

To add a type of equipment, click the link labeled "ADD a Type of Equipment" located below the TYPES OF EQUIPMENT USED TO MEASURE THE TOTAL FLOW OF THE CO₂ STREAM table.

Click image	to	expand
-------------	----	--------

	tates nental Protection			e-GGRT 🎺
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT	DATA REPORTING		Electronic Greenhouse Gas Reporting Tool Helio, Mam-Marie Sallah My Profile Logout
e-GGRT Help Using e-GGRT for Subpart PP reporting	Suppliers of Carbon Dioxid Subpart PP: Supplie Subpart Oreniew + Miscellanee TYPES OF EQUIPMENT USET Specify a type of equipment us	rs of Carbon Dic Is Information » CO2 Equil TO MEASURE CO2	pment Type	_
	Equipment Typ Standard used to operate as calibrate the equipme	id	V	
				e-GORT RY2010.R.45 PP-equipme

Use the drop-down menu to select an equipment type and use the text box to enter the name of the standard used to operate and calibrate the equipment. If you select "other" as the equipment type, enter a description in the text box that appears to the right of the drop-down menu.

Ensure that the type of equipment you select in the equipment type drop-down menu corresponds to the calculation methodology you select and the measurement type you select for each flow meter or CO_2 stream supplied in containers added. For example, if you select "flow meters with segregation" as your calculation methodology and add a flow meter on the Subpart Overview page with "mass basis" as measure type, then you should select "mass flow meter" from the equipment type drop-down menu. For more examples, please refer to the table below.

Calculation Methodology:	Measurement Type:	Equipment Type
Flow meters with no segregation	Mass basis	Mass flow meter
Flow meters with no segregation	Volume basis	Volumetric flow meter
Flow meters with segregation	Mass basis	Mass flow meter
Flow meters with segregation	Volume basis	Volumetric flow meter
Streams that deliver CO ₂ to containers	Mass basis	Weigh bills, scale or load cell
Streams that deliver CO ₂ to containers	Volumetric basis	Loaded container volume

When finished, click SAVE.

Repeat this step until you have added all types of equipment you used to measure the total flow of CO₂.

Click image to expand

	ates ental Protection			e-GGRT 옱
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT DA	ATA REPORTING		Electronic Greenhouse Gas Reporting Tool
				Helio, Mam-Marie Sallah My Profile Logo
e-GGRT Help	Suppliers of Carbon Dioxide C			
	Subpart PP: Suppliers		Dioxide	
	Subpart Overview » Miscellaneous Ir	nformation		
	MISCELLANEOUS INFORMATION	FOR SUPPLIEF	S OF CARBON DIOXIDE	
	 Each type of equipment used to 	o measure the tot	al flow of the CO2 stream	
	 The number of days for which s determine the mass or volume, 			
	 The annual quantity of CO2 tran 			
	TYPES OF EQUIPMENT USED TO N	EACUDE THE T	OTAL FLOW OF THE CO.	CTDEAM
	Id Equipment Type	IEASORE THE I	OTAL PLOW OF THE COS	Delet
	ADD a Type of Equipment			, Deter
	Discourse and the second second	munitive of COs	and the state of the second	ach of the following end-use categories:
			your lacincy transiened to e	
	Food	and beverage		(metric tons)
	Industrial and municipal w			(metric tons)
	Metal fabrication, including	welding and cutting		(metric tons)
	Greenhouse uses for			(metric tons)
	Fumigants (e.g., grain storage) a	nd herbicides		(metric tons)
	Pt	Ip and paper		(metric tons)
	Cleaning an	d solvent use		(metric tons)
		Fire fighting		(metric tons)
	Transportation and storage	of explosives		(metric tons)
	Enhanced oil and natural	gas recovery		(metric tons)
	Long-term storage (s			metric tons
	Research and			(metric tons)
		ther/unknown		(metric tons)
		urer/unknown		(metric tons)
	Please provide the number of days for	and the sub-stitute		d to see a sure that the following
		which substitute		a to measure the the following.
	CO2 mass or volume		(days)	
	CO ₂ concentration		(days)	
	CO2 stream density		(days)	
	CANCEL			

Once all types of equipment used to measure the total flow of CO_2 streams have been added to the table, use the text boxes to enter the aggregated annual quantity of CO_2 transferred to each end-use category and the number of days in the reporting year for which substitute data procedures were used to measure CO_2 mass or volume, concentration, and stream density.

Enter a value in each text box. If no CO₂ was transferred to one or more of the end-use categories, or if substitute data procedures were not used for one or more of the data elements, the value "0" must be entered in each applicable text box.

For importers and exporters, do not distinguish between quantities imported to an end-use category and quantities exported to an end-use category. In each end-use category text box, enter the aggregated quantity imported and exported.

In most cases, the total amount of CO₂ transferred to end-use categories will be equivalent to the total CO₂ supply displayed on the Subpart Overview page.

When finished, click SAVE.

Back to Top

See Also

Screen Errors Using e-GGRT to Prepare Your Subpart PP Report Subpart PP Summary Information for this Supplier Subpart PP Supply Information Subpart Validation Report

Subpart PP Supply Information

This page provides a step-by-step description of how to enter subpart PP Suppliers of Carbon Dioxide supply data.

Subpart PP supply reporting is different for four types of suppliers:

- Supplier Type A: Capture Facilities That Use Flow Meter(s) With or Without Segregation
- Supplier Type B: Importers, Exporters, and Extract Facilities That Use Flow Meter(s)
 Supplier Type C: Capture and Extract Facilities With Stream(s) That Deliver CO₂ to Containers
- Supplier Type D: Importers and Exporters That Use Containers

Capture Facilities that use one or more flow meters, with or without segregation, should proceed to the section titled "Supplier Type A: Capture Facilities That Use Flow Meters" and may disregard all other sections.

Importers, Exporters, and Extract Facilities that use one or more flow meters should proceed to the section titled "Supplier Type B: Importers, Exporters, and Extract Facilities That Use Flow Meters With No System Aggregation" and may disregard all other sections.

Capture and Extract Facilities with one or more streams that deliver CO₂ to containers should proceed to the section titled "Supplier Type C: Capture and Extract Facilities With Streams That Deliver CO₂ to Containers" and may disregard all other sections.

Importers and Exporters that use containers should proceed to the section titled "Supplier Type D: Importers and Exporters That Use Containers" and may disregard all other sections.

Supplier Type A: Capture Facilities That Use Flow Meters

The supply information required for capture facilities that use flow meters includes three steps:

- A1: Flow Meter Information
- A2
 - A2.1: Equation PP-1 (mass-based measurements)
 - A2.2: Equation PP-2 (volume-based measurements)
- A3
 - A3.1: Equation PP-3a (aggregation for flow meters with no segregation)
 - OR A3.2: Equation PP-3b (aggregation for flow meters with segregation)

The steps required for Capture Facilities that use flow meters include the use of either Step A2.1 or Step A2.2, but not both and either Step A3.1 or Step A3.2, but not both.

Your selection of a flow meter type and measurement basis will determine whether e-GGRT uses Step A2.1 or Step A2.2 and A3.1 or A3.2 to calculate CO₂ quantities.

If measurements are reported on a mass basis, e-GGRT will use Step A2.1: Equation PP-1 to calculate CO₂ quantities.

If measurements are reported on a volumetric basis, e-GGRT will use Step A2.2: Equation PP-2 to calculate CO₂ quantities.

e-GGRT will use Step A3.1: Equation PP-3a to calculate facility-level CO2 quantities for flow meters with no segregation by summing the annual mass of CO₂ measured by each individual flow meter.

e-GGRT will use Step A3.2: Equation PP-3b to calculate facility-level CO₂ quantities for flow meters with segregation by subtracting the total annual mass of CO₂ measured by all flow meters downstream of the point(s) of segregation from the total annual mass of CO₂ measured by all flow meters upstream of the point(s) of segregation. For example, if your facility captures a portion of CO₂ for use onsite, and supplies the other portion for commercial applications or to inject or sequester it underground, e-GGRT would use the value you entered for total CO2 captured (flow meter upstream of segregation) less the value you entered for CO2 used onsite (flow meter downstream of segregation) to calculate the CO2 quantity supplied. If you supply captured CO₂ in containers, see Supplier Type C.

Each Step is described below.

Step A1: Flow Meter Information

To add a flow meter, click the link labeled "ADD a Flow Meter" located below the FLOW METERS table.

	tates nental Protection		8-	GGKI	1
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT DATA REPORTING		Electronic Gre R	enhouse Gas	Y
			Helo, I	dett Hill My Profile	Log
e-GGRT Help	R H H Environmental				
Ising e-GORT for Subpart PP sporting	Subpart PP: Suppliers of Carbon Subpart Overview	Dioxide (2011)			
	OVERVIEW OF SUBPART REPORTING REQUIRE	MENTS			
	This subpart consists of facilities with production pr stream for purposes of supplying Co2 for commerci- and maintain custody of a CO2 stream in order to a underground, facilities with CO2 production wells the stream for purposes of supplying CO2 for commerci- maintain custody of a CO2 stream in order to seque underground and importers or exporters of bulk CO2	al applications or that capture equester or otherwise inject it at extract or produce a CO2 al applications or that extract and ister or otherwise inject it	tons), sum for al	ual mass of CO2 (I facility Flow Metri PP: View Validat	ers.
	Supplier Type: Capture CHANGE Calculation Methodology: Flow Meters with no s MISCELLANEOUS INFORMATION Total Annual CO: Transforred to	Types of Equipme			
	End-Use Applications (metric tons)	Used to Measure	C02		
					OPE
	FLOW METERS Flow Meter Name/ID	CO2 (metric tons) Sta	. 1		Deli
	Flow Meter 1		omplete	OPEN	U en
	Flow Meter 2	Inc	omplete	OPEN	
	+ADD a Flow Meter				
	ADD a Flow Meter Facility Overview				

The following information is required for each individual flow meter on this screen:

- A unique flow meter name or ID
- The location of the flow meter in relation to dehydration equipment, compression equipment, and other processing equipment
- The percentage of the CO₂ stream that is biomass-based
- Measurement type
- If you use flow meters with segregation, you must also report the location of the flow meter in relation the point of segregation

Use the text boxes and radio buttons to enter all required information for each flow meter.

If you have "other processing equipment," describe it in the text box. If you have more than one type of "other processing equipment," describe each type in the text box, including whether it is upstream or downstream of the flow meter.

If you don't have all the data, you can enter some now, save it, then finish it later.

When finished, click SAVE. You will be returned to the OVERVIEW screen, which will display the flow meter information you just saved.

Repeat this step until you have added all flow meters. Once all flow meters used at your facility have been added to the table, click OPEN to enter measurement data for each flow meter.

For each flow meter measuring on a mass basis, e-GGRT will calculate GHGs using Equation PP-1 described in Step A2.1.

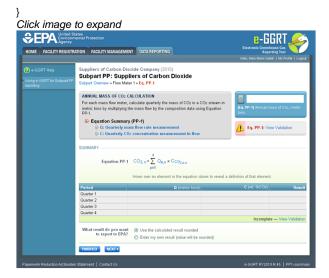
For each flow meter measuring on a volume basis, e-GGRT will calculate GHGs using Equation PP-2 described in Step A2.2.

Step A2.1: Equation PP-1 (mass-based measurements)

	tates nental Protection			
HOME FACILITY REGISTR	ATION FACILITY MANAGEMEN	VT DATA REPORTING	Reporting 1 Helo, Man-Morie Salah H	(eel 📃
	Subpart Oveniew - Flow Mete ANNUAL MASS OF CO2 CL For each mass flow meter, metric tons by multiplying th PP-1. Equation Summary © C: Quarterly ma	liers of Carbon Dioxide Ir 1 = Eq. PP.1 ALCULATION calculate quarterly the mass of CO2 in a CO2 stream he mass flow by the composition data using Equation	in	f CO2, metric
	SUMMARY	$CO_{2, U} \equiv \sum_{p=1}^{4} O_{p,U} \times C_{CO_{2,p,U}}$ Hove rows an element in the equation above to rev	ral a definition of that element.	
	Period	Q (metric tons)	C (wt. %CO2)	Resu
	Quarter 1 Quarter 2 Quarter 3 Quarter 4	u (neolic toins)		
	What result do you want to report to EPA?	 Use the calculated result rounded Enter my own result (value will be rounded) 	Incomplete — \	/rew ∨alidatio

This page will be blank until you enter more data in subsequent screens. Use the radio buttons to select whether you would like to report results calculated by e-GGRT or enter your own results. If you choose to enter your own results, enter the value in the text box that is displayed below the radio buttons.

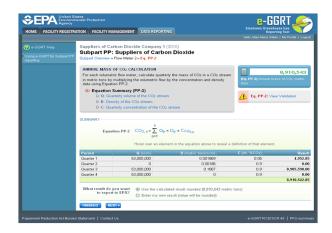
When finished, click NEXT.


Use the text boxes to enter the mass of the CO₂ stream (in metric tons) for this flow meter in each quarter of the reporting year.

When finished, click NEXT.

Using e-GORT for Subpart PP: Suppliers of Carbon Dioxide	CONTRACTOR	tates nental Protection ATION FACILITY MANAGEMENT DATA REP	CETING Content of the second s
Outster 1 0 Cancentratilien of CO: straum. Outster 2 9 (ef. %CO: expressed as fraction) Cancentratilien of CO: straum. Outster 3 1 (ef. %CO: expressed as fraction) Cancentratilien of CO: straum. Outster 4 2 (ef. %CO: expressed as fraction) Standard trend to meanue: CO 2 (ef. %CO: expressed as fraction)	e-GGRT Help Using e-GGRT for Subpart PP reporting	Subpart PP: Suppliers of Ca Subpart Overview = Flow Meter 1 = Eq. PP-1 ANNUAL MASS OF Co2 CALCULATION For each mass flow meter, calculate quart metric tons by multiplying the mass flow by pP-1. De Equation Summary (PP-1) D 0 20 Quarterly mass flow tate in	toon Dioxide lythe mass of CO2 in a CO2 stream in the composition data using Equation
Outsiter 2			(wt. %CO2 expressed as fraction)
Cencentration of CO2 stress Ounster 4 CO2 stress Ounster 4 CO2 stress Standard used to measure CO2			g (wt. %CO2 expressed as fraction)
Ouarter 4 Standard used to measure CO2			1 (wt. %CO2 expressed as fraction)
			2 (wt. %CO2 expressed as fraction)

Use the text boxes to enter the concentration of the CO_2 stream (in weight percent CO_2) for this flow meter in each quarter of the reporting year and the name of the standard used to measure CO_2 concentration. Express the concentration as a decimal fraction (e.g., enter 0.9 for a concentration of 90 percent). If you used more than one standard during the reporting year, enter them all.


When finished, click SUMMARY.

To view the validation page for Equation PP-1, click the link labeled "View Validation."

Once all data has been entered for this flow meter, click FINISHED.

Step A2.2: Equation PP-2 (volume-based measurements)

Use the radio buttons to select whether you would like to report results calculated by e-GGRT or enter your own results. If you choose to enter your own results, enter the value in the text box that is displayed below the radio buttons.

When finished, click NEXT.

	ates iental Protection		e-GGRT 矣
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT DATA REPO	RTING	Electronic Greenhouse Gas Reporting Tool Helo, Marn-Marie Sallah My Profile Logou
e-GGRT Help Using e-GORT for Subpart PP reporting	Suppliers of Carbon Dioxide Company Subpart PP: Suppliers of Carl Subpart Overview = Flow Meter 2 > Eq. PP-2		
	ANNUAL MASS OF CO2 CALCULATION For each volumetric flow meter, calculate qua in metric tons by multiplying the volumetric flu data using Equation PP-2.		
	Equation Summary (PP-2) C Q: Quarterly volume of the C D D: Density of the CQ2 stream	:O2 stream	
	D C: Quarterly concentration of the C	O2 stream	
	Volume of CO2 stream. Quarter 1	53000000	(standard cubic meters)
	Volume of CO2 stream, Quarter 2	0	(standard cubic meters)
	Volume of CO2 stream, Quarter 3	53000000	(standard cubic meters)
	Volume of CO2 stream, Quarter 4	53000000	(standard cubic meters)

Use the text boxes to enter the volume of the CO₂ stream (in standard cubic meters) for this flow meter in each quarter of the reporting year.

When finished, click NEXT.

	ental Protection	e-GGRT 🚄
HOME FACILITY REGISTRA	ATION FACILITY MANAGEMENT DATA REPOR	ING Electronic Greenhouse Gas Reporting Tool Helo, Man-Marie Salah My Profile Log
e-GGRT Help Using e-GGRT for Subpart PP reporting	Suppliers of Carbon Dioxide Company Subpart PP: Suppliers of Carb Subpart Oveniew = Flow Meter 2 = Eq. PP-2	
	ANNUAL MASS OF CO2 CALCULATION For each volumetric flow meter, calculate quar- in metric toos by multiplying the durametric flor data using Equation PP-2. D Equation Summary (PP-2) D O: Quarterly volume of the CO2 stream D D: Density of the CO2 stream D C: Quarterly concerned on the CO	by the concentration and density
	Density of CO2 stream,	0.001869 (metric tons per standard cubic meter)
	Density of CO2 stream, Ouarter 2	0.00186 (metric tons per standard cubic meter)
	Density of CO2 stream, Quarter 3	0.1867 (metric tons per standard cubic meter)
	Density of CO2 stream, Quarter 4	0 (metric tons per standard cubic meter)
	Standard used to measure CO2 Density	
	+BACK NEXT+	

This screen is for the density (metric tons per standard cubic meter) for this flow meter in each quarter of the reporting year.

If you selected the flow meter measurement type as "concentration in weight percentage" on the Add/Edit Flow Meter page, blank text boxes will be displayed, and you should enter the density of the CO₂ stream and the name of the standard used to measure CO₂ stream density. If you used more than one standard during the reporting year, enter them all.

If you selected the flow meter measurement type as "concentration in volume percentage" on the Add/Edit Flow Meter page, populated text boxes

will be displayed with the density of CO₂ that is required in the rule (0.001868 metric tons per standard cubic meter). A text box for the standard used to measure CO₂ density will not be displayed.

When finished, click NEXT.

Click image to expand

Use the text boxes to enter the concentration of the CO_2 stream (in weight percent CO_2 or volume percent CO_2 depending on the flow meter measurement type selected on the Add/Edit Flow Meter page) for this flow meter in each quarter of the reporting year and the name of the standard used to measure CO_2 concentration. Express the concentration as a decimal fraction (e.g., enter 0.9 for a concentration of 90 percent). If you used more than one standard during the reporting year, enter them all.

When finished, click NEXT.

	ed States ronmental Protection ncy			Electronic Green	
HOME FACILITY REGI	ME FACILITY REGISTRATION FACILITY MANAGEMENT DATA REPORTING				rting Tool
e-GGRT Help Jsing e-GGRT for Subpart eporting	Subpart PP:	rbon Dioxide Company 1 Suppliers of Carbo Flow Meter 2 * Eq. PP-2			
	For each volumete	multiplying the volumetric flow	erly the mass of CO ₂ in a CO ₂ strea v by the concentration and density	(Eq. PP-2) Annual m tons.	8,910,543
	D Q: Qua	Summary (PP-2) rterly volume of the CO2 strea sity of the CO2 stream	im	🔔 Eq. PP-2: Vi	w Validation
		rterly concentration of the CO	2 stream		
	SUMMARY	ion PP-2 $CO_{2, U} = \sum_{p=1}^{4} Q_p$ Hover over an elec	$x D_p \times C_{CO_{2,p}}$ ment in the equation above to reveal	a definition of that element	
	Period	Q (scm)	D (metric tons/scm)	C (wf. %CO2)	Resu
		53,000,000	0.001869	0.05	4,952.8
	Quarter 1			0.9	0.0
		0	0.00186		
	Quarter 1		0.1867	0.9	
	Quarter 1 Quarter 2	0			8,905,590.0 0.0 8,910,542.8

To view the validation page for Equation PP-2, click the link labeled "View Validation."

Once all data has been entered for this flow meter, click FINISHED.

Step A3.1: Equation PP-3a (aggregation for flow meters with no segregation)

To view the results of Equation 3a, on the Subpart Overview page click VIEW SUMMARY.

HOME FACILITY REGIST	RATION FACILITY MANAGEMENT DATA REPORTING	Liectronic Greennusse Gas Reporting Tool Hello, Mari-Marie Sallah My Profile Loj
🕐 e-GGRT Help	Suppliers of Carbon Dioxide Company 3 (2010)	
Using e-GORT for Subpart PP reporting	Subpart PP: Suppliers of Carbon Dioxide Subpart Oveniew » Eq. PP-3a	
	ANNUAL MASS OF CO2 EMISSIONS AGGREGATION e-GGRT uses equation PP-3a to arrive at a facility level value for CO2 value, reported to EPA, is a simple summation of all CO2 emissions f flow meters or CO2 streams.	
	SUMMARY Equation PP-3a CO2=∑ CO2, u	
		bove to reveal a definition of that element.
	CO2 Stream Name/ID Stream 1	CO2 (metric tons) Status
		Incomplete

To return to the Subpart Overview page once you have reviewed the facility-level data, click BACK.

Step A3.2: Equation PP-3b (aggregation for flow meters with segregation)

To view the results of Equation 3b, on the Subpart Overview page click VIEW SUMMARY.

To return to the Subpart Overview page once you have reviewed the facility-level data, click BACK.

Supplier Type B: Importers, Exporters, and Extract Facilities That Use Flow Meter(s)

The supply information required for Importers, Exporters and Extract Facilities that use flow meters includes three Steps:

- B1: Flow Meter InformationB2
 - B2.1: Equation PP-1 (mass-based measurements)
 - OR
 - B2.2: Equation PP-2 (volume-based measurements)
- B3
 - B3.1: Annual CO₂ Extracted
 - OR
 B3.2: Annual CO₂ Imported and Exported

The steps required for Importers, Exporters and Extract Facilities that use flow meters include the use of either Step B2.1 or Step B2.2, but not both.

Your selection of a measurement type and supplier type will determine whether e-GGRT uses Step B2.1 or Step B2.2 and Step B3.1 or B3.2 to calculate CO_2 emissions.

If measurements are reported on a mass basis, e-GGRT will use Step B2.1: Equation PP-1 to calculate CO₂ quantities.

If measurements are reported on a volumetric basis, e-GGRT will use Step B2.2: Equation PP-2 to calculate CO₂ quantities.

e-GGRT will use Step B3.1: Annual CO₂ Extracted to report aggregated GHG information for Extract Facilities.

e-GGRT will use Step B3.2: Annual CO₂ Imported and Exported to report aggregated GHG information for Importers and Exporters.

Each Step is described below.

Step B1: Flow Meter Information

To add a flow meter, click the link labeled "ADD a Flow Meter" located below the FLOW METERS table on the Subpart Overview page.

Click image to expand	Click	image	to	expand
-----------------------	-------	-------	----	--------

The following information is required for each individual flow meter on this screen:

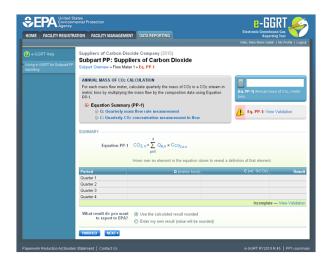
- A unique flow meter name or ID
- The location of the flow meter in relation to dehydration equipment, compression equipment, and other processing equipment
- The percentage of the CO₂ stream that is biomass-based
- Measurement type

Use the text boxes and radio buttons to enter all required information for each flow meter.

If you have "other process equipment", describe it in the text box. If you have more than one type of "other processing equipment," describe each type in the text box, including whether it is upstream or downstream of the flow meter.

If you don't have all the data, you can enter some now, save it, then finish it later.

When finished, click SAVE. You will be returned to the OVERVIEW screen, which will display the flow meter information you just saved.

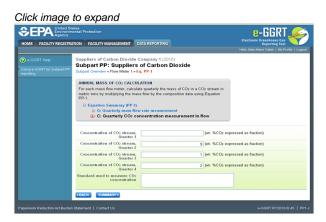


Repeat this step until you have added all flow meters. Once all flow meters used at your facility have been added to the table, click OPEN to enter measurement data for each flow meter.

For each flow meter measuring on a mass basis, e-GGRT will calculate emissions using Equation PP-1 described in Step B2.1.

For each flow meter measuring on a volume basis, e-GGRT will calculate emissions using Equation PP-2 described in Step B2.2.

Step B2.1: Equation PP-1 (mass-based measurements)


This page will be blank until you enter more data in subsequent screens. Use the radio buttons to select whether you would like to report results calculated by e-GGRT or enter your own results. If you choose to enter your own results, enter the value in the text box that is displayed below the radio buttons.

When finished, click NEXT.

	to expand ates ental Protection		e-GGRT 🔑
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT DATA REPORT	ING	Electronic Greenhouse Gas Reporting Tool Helio, Mari-Marie Sallah My Profile Logout
e-GGRT Help de-GGRT for Subpart PP wporting	Suppliers of Carbon Dioxide Company 1 Subpart PP: Suppliers of Carbo Dayad Orware - Flow Meter 1 - Eq. P-1 ANNUAL MASS OF Co: CAL CULATION For each mass flow meter, calculate quarkey to perform the mass flow that more performance of the second second second second D - Counterly mass flow rate more D - Counterly (DD: cancentation more) - C. Outsethy The second sec	on Dioxide the mass of CO ₂ in a CO ₂ stream in composition data using Equation easurement	
	Mass of CO2 stream, Quarter 1 Mass of CO2 stream, Quarter 2 Mass of CO2 stream, Quarter 3 Mass of CO2 stream, Quarter 4	800000 (metric tons) 800000 (metric tons) (metric tons) 800000 (metric tons)	
	+BACK NEXT+		

Use the text boxes to enter the mass of the CO₂ stream (in metric tons) for this flow meter in each quarter of the reporting year.

When finished, click NEXT.

Use the text boxes to enter the concentration of the CO_2 stream (in weight percent CO_2) for this flow meter in each quarter of the reporting year and the name of the standard used to measure CO_2 concentration. Express the concentration as a decimal fraction (e.g., enter 0.9 for a concentration of 90 percent). If you used more than one standard during the reporting year, enter them all.

When finished, click SUMMARY.

To view the validation page for Equation PP-1, click the link labeled "View Validation."

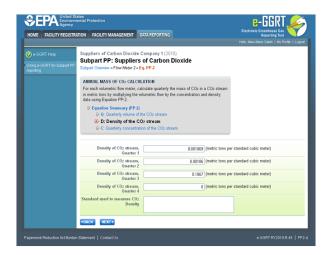
Once all data has been entered for this flow meter, click FINISHED.

Step B2.2: Equation PP-2 (volume-based measurements)

Click image to expand

		NAGEMENT DATA REPORT	NG	Repo Helo, Mari-Marie Sal	inting Tool
e-GGRT Help		rbon Dioxide Company 1			
	Subpart PP:	Suppliers of Carbo	on Dioxide		
	Subpart Overview +	Flow Meter 2 + Eq. PP-2			
	ANNUAL MASS	OF CO2 CALCULATION			8,910,54
			rly the mass of CO2 in a CO2 strea		
	in metric tons by data using Equati		by the concentration and density	(Eq. PP-2) Annual m tons.	
	Equation 5	Summary (PP-2)			
	D Q: Qua	rterly volume of the CO2 strea	n	A Eq. PP-2: Vi	ew Validation
	D: Den	sity of the CO2 stream		-	
	D C: Qua	terly concentration of the CO:	stream		
		p=1			
		Hover over an eler	ent in the equation above to reveal	a definition of that element	
	Period	Hover over an eler	ent in the equation above to reveal D (metric tons/scm)	a definition of that element C (wt. %CO2)	
	Quarter 1	Q (scm) 53,000,000	D (metric tons/scm) 0.001869	C (wt. %CO2) 0.05	Re: 4,952
	Quarter 1 Quarter 2	Q (scm) 63,000,000 0	D (metric tons/scm) 0.001869 0.00186	C (wl. %CO2) 0.05 0.9	Re: 4,952 0
	Quarter 1 Quarter 2 Quarter 3	Q (scm) 53,000,000 0 53,000,000	D (metric tons/scm) 0.001869 0.00186 0.1867	C (wt. %CO2) 0.05 0.9 0.9	Res 4,952 0 8,905,590
	Quarter 1 Quarter 2	Q (scm) 63,000,000 0	D (metric tons/scm) 0.001869 0.00186	C (wl. %CO2) 0.05 0.9	Res 4,952 0 8,905,590 0
	Quarter 1 Quarter 2 Quarter 3	Q (scm) 53,000,000 0 53,000,000	D (metric tons/scm) 0.001869 0.00186 0.1867	C (wt. %CO2) 0.05 0.9 0.9	Res 4,952 0 8,905,590 0
	Quarter 1 Quarter 2 Quarter 3	Q (scm) 53,000,000 0 53,000,000 53,000,000	D (metric tens/scm) 0.001869 0.00186 0.1067 0	C (wr. %CO2) 0.05 0.9 0.9 0.9	Res 4,952 0 8,905,590
	Quarter 1 Quarter 2 Quarter 3 Quarter 4	Q (scm) 53,000,000 0 53,000,000 53,000,000 53,000,000 10 Woat the calcu	D (metric tons/scm) 0.001869 0.00186 0.1867	C (wr. %CO2) 0.05 0.9 0.9 0.9	Res 4,952 0 8,905,590 0

Use the radio buttons to select whether you would like to report results calculated by e-GGRT or enter your own results. If you choose to enter your own results, enter the value in the text box that is displayed below the radio buttons.

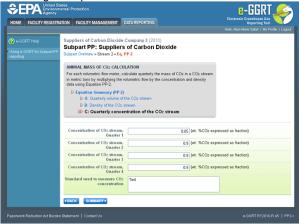

When finished, click NEXT.

Click image to expand

	ates ental Protection		
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT D	ATA REPORTING	Reporting Tool Helo, Man-Marie Salah My Profile Logout
e-GGRT Help Using e-GORT for Subpart PP reporting	Suppliers of Carbon Dioxide C Subpart PP: Suppliers Subpart Overview = Flow Meter 2 = Ed	of Carbon Dioxide	reau, manimare catalin my rione Lugua
		ATION Iculate quarterly the mass of CO2 in a Co Ilumetric flow by the concentration and d	
	Equation Summary (PP-2) D: Q: Quarterly volume D: Density of the CO2 st D: C: Quarterly concentration	tream	
	Volume of CO2 stream, Quarter 1	53000000 (st	andard cubic meters)
	Volume of CO2 stream, Quarter 2	0 (st	andard cubic meters)
	Volume of CO2 stream, Quarter 3	53000000 (st	andard cubic meters)
	Volume of CO2 stream, Quarter 4	53000000 (st	andard cubic meters)
	+BACK NEXT+		

Use the text boxes to enter the volume of the CO₂ stream (in standard cubic meters) for this flow meter in each quarter of the reporting year.

When finished, click NEXT.


This screen is for the density (metric tons per standard cubic meter) for this flow meter in each quarter of the reporting year.

If you selected the flow meter measurement type as "concentration in weight percentage" on the Add/Edit Flow Meter page, blank text boxes will be displayed, and you should enter the density of the CO₂ stream and the name of the standard used to measure CO₂ stream density. If you use more than one standard during the reporting year, enter them all.

If you selected the flow meter measurement type as "concentration in volume percentage" on the Add/Edit Flow Meter page, populated text boxes will be displayed with the density of CO₂ that is required in the rule (0.001868 metric tons per standard cubic meter). A text box for the standard used to measure CO₂ density will not be displayed.

When finished, click NEXT.

Click image to expand

Use the text boxes to enter the concentration of the CO_2 stream (in weight percent CO_2 or volume percent CO_2 depending on the flow meter measurement type selected on the Add/Edit Flow Meter page) for this flow meter in each quarter of the reporting year and the name of the standard used to measure CO_2 concentration. Express the concentration as a decimal fraction (e.g., enter 0.9 for a concentration of 90 percent). If you used more than one standard during the reporting year, enter them all.

When finished, click NEXT.

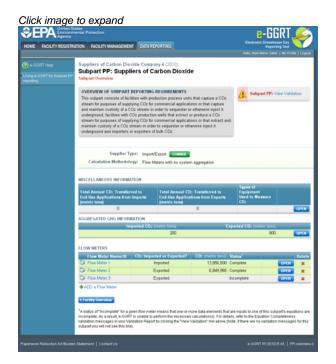
	Output Soldward Connector = Piper Metter 2 = Eq. (P.2 AttRNDAL MASS OF Co.C. ALCULATION For exch velocitied quarteries from ster, closed quarteries from bet, clo	ss of CO2, metric
particle Solid Determine the Market J < 24, PT-2 Marking Likes of CO2 CL (LLATCH) For stack valuation for CO2 (LLATCH) Provide the market of CO2 in a CO	Departing Comparison Display Control are the two that are the the "area" Display Control area Display Control area <th< th=""><th>ss of CO2, metric</th></th<>	ss of CO2, metric
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	For each volumetric flow meter, calculate quarterly the mass of CO2 in a CO2 stream in metric tans by multiplying that volumetric flow by the concentration and density diff (P-2) your dimension (PP-2) P O Contently volume of the CO2 stream C Eq. PP-2: View Vola C Eq. P	ss of CO2, metric
b = 0.04 toty value of the CO2 stream b = 0.004 ty of the CO2 stream b C = 044 ty of the CO2 stream b C = 044 ty of the CO2 stream C = 044 ty of the CO2 ty of the CO2 stream C = 044 ty of the CO2 ty of the CO2	O: Quarterly volume of the CO2 stream Eq. PP-2: View Valie Eq. PP-2: View Valie	
$\begin{array}{c c c c c c } \hline P & Density of the CO2 stream \\ \hline P & Density of the CO2 stream \\ \hline C & Coasterly concentrations of the CO2 stream \\ \hline \hline \\ \hline $		
$\label{eq:constraints} D_{\rm c} C O_{24} {\rm sets} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	P. D: Density of the CO2 stream	Validation
Partial Q (rest) Q (res) Q (res) <thq (res)<="" th=""> Q (res) Q (res)</thq>		
Equation PP 2 CO2, u + £ =1 A Op × Co × Co2, a Co2 Howr over an element in the equation above to reveal a defention of that element. E A	D C: Quarterly concentration of the CO2 stream	
Counter 1 53,000,000 0.001669 0.05 4,5922 Counter 2 0 0.00166 0.9 0.9 Counter 3 53,000,000 0.1667 0.9 69,55,996 Counter 4 53,000,000 0 0.9 0.0	p=1	
Outster 2 0 0.00166 0.9 0.0 Ouster 3 63,000,000 0.1667 0.9 8,546,590 Ouster 4 63,000,000 0 0.9 0.0	mover over an element in the equation above to reveal a definition of that element.	Dem
Ouarter 3 53,000,000 0.1867 0.9 8,905,590. Ouarter 4 53,000,000 0 0.9 0//		
Guarter 4 53,000,000 0 0.9 0	Period Q (scm) D (metric tens/scm) C (wt. %CO2)	
	Period Q (scm) D (metric tons/scm) C (wt. %C00) Ounter 1 53,000,000 0.001660 0.05 Ounter 2 0 0.00166 0.9	4,952.
8,910,542	Bartinital D product scalarship C (will field 00) Constrict 1 52,00,000 0.001660 0.06 Constrict 2 0 0.001660 0.9 Constrict 3 52,00,000 0.10877 0.9	4,952. 0. 8,905,590.
	Period Q (scm) D (metric torel/scm) C (wt. %cOo) Guarter 1 653,000,00 0.0189 0.05 Guarter 2 0 0.00186 0.9 Guarter 3 653,000,00 0.1877 0.9 Guarter 4 653,000,00 0 0.9	4,952. 0. 8,905,590. 0.
	Period Q (scm) D (metric torel/scm) C (wt. %cOo) Guarter 1 653,000,00 0.0189 0.05 Guarter 2 0 0.00186 0.9 Guarter 3 653,000,00 0.1877 0.9 Guarter 4 653,000,00 0 0.9	4,952. 0. 8,905,590. 0.

To view the validation page for Equation PP-2, click the link labeled "View Validation."

Once all data has been entered for this flow meter, click FINISHED.

Step B3.1: Annual CO₂ Extracted

EPA Environ	Rates mental Protection		6-	GGRT 🔎	
IOME FACILITY REGIST	TATION FACILITY MANAGEMENT	DATA REPORTING		reenhouse Gas Reporting Tool In Salah My Profile L	
e GGRT Help	Suppliers of Carbon Dioxide	Company 4 (2010)	1000		
	Subpart PP: Supplier	s of Carbon Dioxide			
poding	Subpart Overview	Subpat Overview			
	OVERVIEW OF SUBPART REP	ORTING REQUIREMENTS	A Submart	PP: View Validation	
	stream for purposes of supplying and maintain custody of a CO2 s underground, facilities with CO2 stream for purposes of supplying	with production process write that capture a CO (CO2 for commencial applications or that capture tream in order to sequester or otherwise inject it production wells that extract or produce a CO2 (CO2 for commencial applications or that extract m in order to sequester or otherwise inject it posters of bulk CO2.	2		
	Supplier Type:	Extract CHANGE			
		Flow Meters with no system aggregation			
	MISCELLANEOUS INFORMATIO				
	Total Annual CO ₂ Transferred I	to Types of Equ	ipment		
	End-Use Applications (metric to 1.3			00	
	AGGREGATED GHG INFORMATI				
	NO ONE ON THE ONIO THE OWNER		Extracted CO2 (metric	tons)	
				00	
	FLOW METERS				
	Flow Meter Name/ID	CO2 (metric tore) Status ¹	De	
	DR Flow Meter 1		0 Complete	OPEN	
	Flow Meter 2	8,736,33	6 Complete	OPEN	
	Cat Flow Meter 3		Incomplete	OPEN	
	+ ADD a Flow Meter				
	t Facility Overview				
	incomplete. As a result, e-OORT is u	flow meter means that one or more data elements to mable to perform the necessary calculation(s). For d on Report by clicking the "View Validation" link above	letails, refer to the Equation	on Completeness	


To enter aggregated GHG information, find the AGGREGATED GHG INFORMATION table and click OPEN.

	ates lental Protection	e-GGRT 🞺
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT DATA REPORTING	Electronic Greenhouse Gas Reporting Tool Hello, Mars-Marie Sallah My Profile Logout
😮 e-GGRT Help	Suppliers of Carbon Dioxide Company 6 (2010) Subpart PP: Suppliers of Carbon Dioxide	
Using e-GGRT for Subpart PP reporting	Subpart Overview = Aggregated CO2 ANNUAL MASS OF CO2, AGGREGATED	
	Annual mass of CO2 200 (metric tons) imported	
	Annual mass of CO2 800 (metric tons)	

Use the text box to enter the total annual mass of CO_2 extracted (in metric tons) at your facility. Ensure that the value you enter here is equal to the sum of CO_2 through all flow meters you use, as listed on the Subpart Overview page.

When finished, click SAVE.

Step B3.2: Annual CO₂ Imported and Exported

To enter aggregated GHG information, find the AGGREGATED GHG INFORMATION table and click OPEN.

Use the text boxes to enter the total annual mass of CO_2 imported and exported (in metric tons) at the corporate level. Enter a value of "0" for the total annual mass of CO_2 imported if you exported only, and vice versa. Ensure that the value you enter here as imported is equal to the sum of CO_2 through all import flow meters you use, as listed on the Subpart Overview page. Ensure the same for the exported value.

When finished, click SAVE.

 $\{anchor: Supplier \ Type \ C: \ Capture \ and \ Extract \ Facilities \ With \ Streams \ That \ Deliver \ CO_2 \ to \ Containers \}$

Supplier Type C: Capture and Extract Facilities With Streams That Deliver CO₂ to Containers

The supply information required for Capture and Extract Facilities with streams that deliver CO₂ to containers includes three Steps:

- C1: CO₂ Stream Information
- C2
- C2.1: Equation PP-1 (mass-based measurements)
- OR • C2 2: Equation BP 2 (volume based measurement
- C2.2: Equation PP-2 (volume-based measurements)
 C3: Equation PP-3a (aggregation of CO₂ streams supplied in containers)

The steps required for Capture and Extract Facilities that supply CO₂ streams in containers include the use of either Step C2.1 or Step C2.2, but not both and Step C3.

Your selection of a CO₂ stream type and measurement basis will determine whether e-GGRT uses Step C2.1 or Step C2.2 to calculate CO₂ quantities.

If measurements are reported on a mass basis, e-GGRT will use Step C2.1: Equation PP-1 to calculate CO2 quantities.

If measurements are reported on a volumetric basis, e-GGRT will use Step C2.2: Equation PP-2 to calculate CO₂ quantities.

E-GGRT will use Step C3: Equation PP-3a to calculate facility-level CO_2 quantities for CO_2 streams supplied in containers by summing the annual mass of CO_2 measured for each individual CO_2 stream.

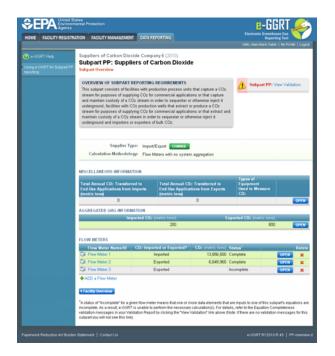
Each Step is described below.

```
Step C1: CO<sub>2</sub> Stream Information
```

EPA Environme Agency DME FACILITY REGISTRI	ental Protection	DATA REPO			Electronic	-GGRT Greenhouse Gas Reporting Tool	-
					Helo, Man-I	Aurio Sallah My Pr	atle Log
	Suppliers of Carbon Diox						
ing e-OORT for Subpart PP porting	Subpart PP: Suppli Subpart Overview	ers of Ca	rbon Diox	ide			
	OVERVIEW OF SUBPART F	EPORTING R	EQUIREMENTS		A Suba	art PP: View Val	idation
	This subpart consists of facili stream for purposes of supply and maintain custody of a CO underground, facilities with C stream for purposes of supply maintain custody of a CO2 st underground and importers or	ying CO2 for co O2 stream in on O2 production v ying CO2 for co ream in order to	immercial applic der to sequeste wells that extrac immercial applic to sequester or o	ations or that capture r or otherwise inject it at or produce a CO2 ations or that extract an	-		
	Supplier Ty Calculation Methodolo		ers with no sys				
	MISCELLANEOUS INFORMA	TION					
	Total Annual CD: Transferr End-Use Applications from ((metric tons)	Imports		CO: Transferred to ications from Exports	Types of Equipment Used to Me CO:	esure	
	0			0			OPE
	AGGREGATED GHG INFORM						
	Imp	orted CO ₂ (m	etric tons) 200		xported CO ₂ (met	nic tons) 800	000
			200			000	0193
	FLOW METERS Flow Meter Name/ID	CO: Impacts	d or Exported	CO2 (metric toris)	Status		Dele
	Flow Meter 1		ported	13,856,500		OPD	
	Cal Flow Meter 2	Ex	ported	6,849,965	Complete	OPEN	×
	Flow Meter 3	Ex	ported		Incomplete	OPEN	×
	+ ADD a Flow Meter						
	t Facility Overview						
	¹ A status of "incomplete" for a gi incomplete. As a result, e-OORT validation messages in your Vali subpart you will not see this link)	is unable to per dation Report b	form the necess	ary calculation(s). For det	tails, refer to the Equ	ation Completene	155

To add a CO₂ stream supplied in containers, click the link labeled "ADD a CO₂ Stream" located below the CO₂ STREAMS table.

	tates nental Protection		e-GGRT 🔑
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT	DATA REPORTING	Electronic Groenhouse Gas Reporting Teol Hello, Marn-Marie Salari My Profile Logout
e-GGRT Help Using e-GGRT for Subpart PP reporting	Suppliers of Carbon Diox Subpart PP: Suppli Subpart Oveniew + Add/Edit C	ers of Carbon Dioxide	
	ADD OR EDIT CO2 STREAM	I	 denotes a required field
	UNIT INFORMATION		
	Name or ID*	Stream 1	(40 characters maximum)
	Description (optional)	Stream to Containers	
	Туре	CO2 Stream	
	Measurement T		itration in weight percentage) itration in volume percentage)
	Percentage of the CO2 stre metered by the flow meter is biomass-ba	that	
	CANCEL SAVE		


The following information is required for each $\rm CO_2$ stream supplied in containers on this screen:

- A unique CO₂ Stream Name or ID
- Measurement Type

Use the text boxes and radio buttons to enter all required information for each CO_2 stream.

If you don't have all the data, you can enter some now, save it, then finish it later.

When finished, click SAVE. You will be returned to the OVERVIEW screen, which will display the flow meter information you just saved.

Repeat this step until you have added all CO₂ streams. Once all CO₂ streams at your facility have been added to the table, click OPEN to enter measurement data for each CO₂ stream.

For each CO₂ stream measured on a mass basis, e-GGRT will calculate GHGs using Equation PP-1 described in Step C2.1.

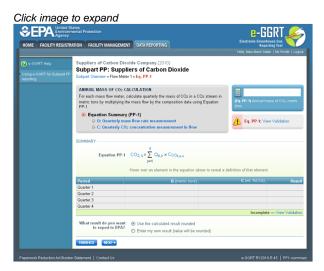
For each CO₂ stream measured on a volume basis, e-GGRT will calculate GHGs using Equation PP-2 described in Step C2.2.

Step C2.1: Equation PP-1 (mass-based measurements)

HOME FACILITY REGISTR	tates nental Protection ATION FACILITY MANAGEMEN	NT DATA REPORTING	Electronic Greenhouse G Reporting To	as tel
e-GGRT Help Jsing e-GGRT for Subpart PP	Suppliers of Carbon Dio Subpart PP: Suppl Subpart Overview + Flow Meter	liers of Carbon Dioxide	Helio, Mam-Marie Sallah My	/ Profile Logo
	metric tons by multiplying th PP-1. Equation Summary Q Quarterly ma	calculate quarterly the mass of CO2 in a CO2 stream he mass flow by the composition data using Equation		
	SUMMARY Equation PP-1	$CO_{2,U} = \sum_{p=1}^{4} O_{p,U} \times C_{CO_{2,p,U}}$ Hover over an element in the equation above to reve	eal a definition of that element.	
	Period	Q (metric tons)	C (wt. %CO2)	Resu
	Quarter 1 Quarter 2 Quarter 3 Quarter 4	a (0800 8007)		
	What result do you want	Use the calculated result rounded	Incomplete — V	iew validatio

This page will be blank until you enter more data in subsequent screen. Use the radio buttons to select whether you would like to report results calculated by e-GGRT or enter your own results. If you choose to enter your own results, enter the value in the text box that is displayed below the radio buttons.

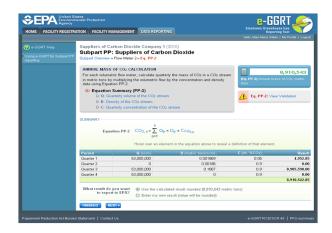
When finished, click NEXT.


Use the text boxes to enter the mass of the CO_2 stream (in metric tons) in each quarter of the reporting year.

When finished, click NEXT.

HOME FACILITY REGISTR	Lates Inental Protection	G
e-GGRT Help Using e-GGRT for Subpart PP reporting	Suppliers of Carbon Dioxide Company 1 (Subpart CPP: Suppliers of Carboo Regard Converse + Reg - Reg	n Dioxide
	Concentration of CO2 stream,	(wt. %CO2 expressed as fraction)
	Concentration of CO ₂ stream, Ouarter 2	g (wt. %CO2 expressed as fraction)
	Concentration of CO2 stream, Quarter 3	1 (wt. %CO2 expressed as fraction)
	Concentration of CO2 stream, Quarter 4	2 (wt. %CO2 expressed as fraction)
	Standard used to measure CO2 concentration	

Use the text boxes to enter the concentration of the CO_2 stream (in weight percent CO_2) in each quarter of the reporting year and the name of the standard used to measure CO_2 concentration. Express the concentration as a decimal fraction (e.g., enter 0.9 for a concentration of 90 percent). If you used more than one standard during the reporting year, enter them all.


When finished, click SUMMARY.

To view the validation page for Equation PP-1, click the link labeled "View Validation."

Once all data has been entered for this CO₂ stream, click FINISHED.

Step C2.2: Equation PP-2 (volume-based measurements)

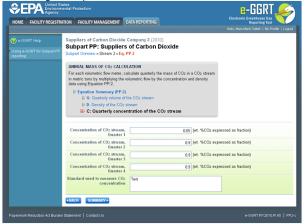
Use the radio buttons to select whether you would like to report results calculated by e-GGRT or enter your own results. If you choose to enter your own results, enter the value in the text box that is displayed below the radio buttons.

When finished, click NEXT.

	tates nental Protection		e-GGRT 🔑
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT DATA REPOR	TING	Electronic Greenhouse Gas Reporting Tool Helo, Marn-Marie Salah My Profile Logout
e-GGRT Help Using e-OGRT for Subpart PP reporting	Suppliars of Carbon Dioxide Company Subpart PP: Suppliers of Carbi Regard Downers - Flew Meter 2-42, PP2 AMNUAL MASS OF CO: CALCULATION For each volumetic flow meter, calculate gard data using Equations PP2. Di Carbin PP2. Di Carbin PP2. Di Carbing of the CO: stream Di C. Courterly volumet of the Cf.	terly the mass of CO2 in a C w by the concentration and d O2 stream	
	Volume of CO2 stream,	53000000 (#	andard cubic meters)
	Volume of CO2 stream, Quarter 2	0 (st	andard cubic meters)
	Volume of CO2 stream, Quarter 3	53000000 (st	andard cubic meters)
	Volume of CO2 stream, Quarter 4	53000000 (st	andard cubic meters)

Use the text boxes to enter the volume of the CO₂ stream (in standard cubic meters) in each quarter of the reporting year.

When finished, click NEXT.


	ental Protection		e-GGRT 🚅	
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT	DATA REPORTING		Electronic Greenhouse Gas Reporting Tool Helo, Mam-Marie Salah My Profile Logo
Image: a contract height Using a contract for bubgast PP married	Suppliers of Carbon Dioxide Subpart PP: Suppliers Subpart Oveniew = Flow Meter 2 =	s of Carbon Dioxide		
	ANNUAL MASS OF CO2 CALC For each volumetric flow meter, c in metric tons by multiplying the data using Equation PP-2; D C. Cuaterly volume of D D Construction of D D Density of the C D C. Cuaterly concertainty			
	Density of CO2 stream, Quarter 1	0.001	869 (metric tons per st	andard cubic meter)
	Density of CO2 stream, Quarter 2		186 (metric tons per st	andard cubic meter)
	Density of CO2 stream, Quarter 3	0.1	867 (metric tons per st	andard cubic meter)
	Density of CO2 stream, Quarter 4		0 (metric tons per st	andard cubic meter)
	Standard used to measure CO2 Density			
	+BACK NEXT+			

This screen is for the density (metric tons per standard cubic meter) for this CO₂ stream supplied in containers in each quarter of the reporting year.

If you selected the CO_2 stream measurement type as "concentration in weight percentage" on the Add/Edit CO_2 stream page, blank text boxes will be displayed, and you should enter the density of the CO_2 stream and the name of the standard used to measure CO_2 stream density. If you use more than one standard during the reporting year, enter them all.


If you selected the flow meter measurement type as "concentration in volume percentage" on the Add/Edit CO_2 stream page, populated text boxes will be displayed with the density of CO_2 that is required in the rule (0.001868 metric tons per standard cubic meter). A text box for the standard used to measure CO_2 density will not be displayed. When finished, click NEXT.

Click image to expand

Use the text boxes to enter the concentration of the CO_2 stream (in weight percent CO_2 or volume percent CO_2 depending on the CO_2 stream measurement type selected on the Add/Edit CO_2 Stream page) in each quarter of the reporting year and the name of the standard used to measure CO_2 concentration. Express the concentration as a decimal fraction (e.g., enter 0.9 for a concentration of 90 percent). If you used more than one standard during the reporting year, enter them all.

When finished, click NEXT.

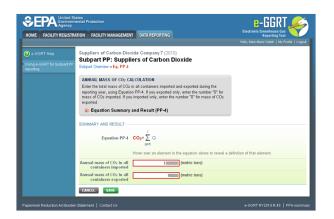
To view the validation page for Equation PP-2, click the link labeled "View Validation."

Once all data has been entered for this CO2 stream, click FINISHED.

Step C3: Equation PP-3a (aggregation of CO₂ streams)

To view the results of Equation 3a, on the Subpart Overview page click VIEW SUMMARY.

To return to the Subpart Overview page once you have reviewed the facility-level data, click BACK.


Supplier Type D: Importers and Exporters That Use Containers

	tates nental Protection		Electronic Greenhouse Gas	2		
HOME FACILITY REGISTR	ATION FACILITY MANAGEMENT DATA RE	EPORTING	Reporting Tool Helo, Mari-Marie Salah My Profi	le Logo		
e-GGRT Help Using e-GGRT for Subpart PP reporting	Suppliers of Carbon Dioxide Comp. Subpart PP: Suppliers of C Subpart Overview					
	OVERVIEW OF SUBPART REPORTING This subpart consiste of facilities with pro- stream for purposes of supplying CO2 for and maintain custody of a CO2 stream in underground, facilities with CO2 products stream for purpose of supplying CO2 for maintain custody of a CO2 stream in orde underground and importers or exporters or	Subpart PP: View Validation				
	Supplier Type: ImpoSEspot Calculation Methodology: Containers MISCELLANEOUS INFORMATION					
		0	0		OPEN	
	ALL CONTAINERS					
	Imported CO2 (metric tons) Expe 1.000.000		orted CO ₂ (metric tons) 90.000 OPEN			
			90,000	OPEN		

Subpart PP requires importers and exporters that supply CO₂ in containers to report the following information at the corporate level:

- Annual mass of CO₂ in all containers imported (in metric tons)
- Annual mass of CO_2^{-} in all containers exported (in metric tons)

To enter CO2 import and export data, click OPEN in the ALL CONTAINERS table on the Subpart Overview page.

Use the text boxes to enter the total annual mass of CO_2 imported and exported (in metric tons) at the corporate level. Enter a value of "0" for the total annual mass of CO_2 imported if you exported only, and vice versa.

When finished, click SAVE.

Back to Top

See Also

Screen Errors Using e-GGRT to Prepare Your Subpart PP Report Subpart PP Summary Information for this Supplier Subpart PP Product and Equipment Information Subpart Validation Report